

Using fatty acids as physiological and ecological indicator of zooplankton in the Yellow Sea: with implications in relationships of biochemical indices and biodiversity

Xinming Pu xmpu@fio.org.cn First Institute of Oceanography, State Oceanic Administration Qingdao, China

2010-05-12

Marine ecosystem dynamics and degradation in coastal oceans

zooplankton

Quantity

Biomass

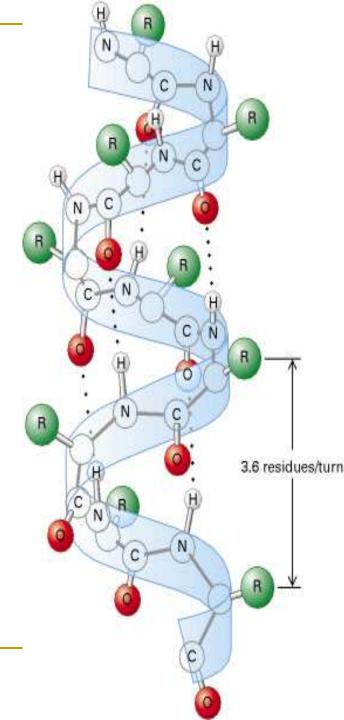
Quality

Biodiversity

Nutritional value (or biochemical contents) Jellyfish vs copepod

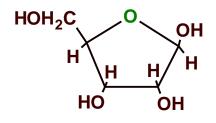
Biochemical fingerprints in zooplankton

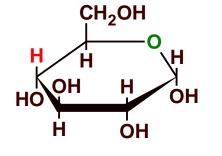
- Proteins
- Carbohydrates
- Lipids
- Nucleic Acids


Proteins

Many functions: the embodiment of life

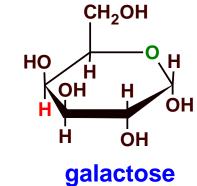
Total protein content Amino acids


Enzymes


Protein content is a good indicator of the nutritive state of the animals and, also, it is a good tool for elucidating food-competitive capacities among species. The amino acid composition of the species is a good indicator of the trophic niche and the adaptations of the species to abiotic factors.

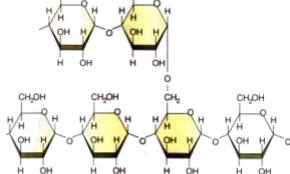
(Cástor Guisande, 2006)

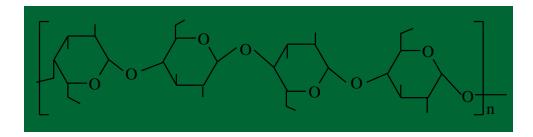
Carbohydrates Energy supply for metabolism



glucose

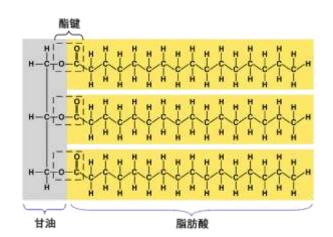
HOH₂C CH₂OH H OH OH OH H


fructose


0

ribose

н снон снон



cellulose

starch

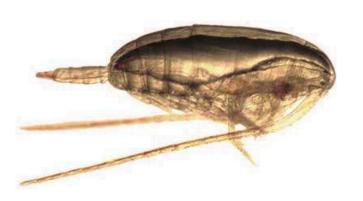
Lipid

- Triacylglycerol
- Phospholipid
- Wax esters …

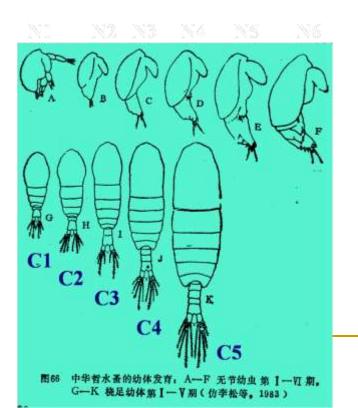
Fatty acids

Essential Fatty Acid (EFA) e.g. EPA C20:5(n-3), DHA C22:6(n-3) Litzow et al(2006) EFA limitation hypothesis during ecosystem regime shift

Good indicator for feeding relationships, trophic position, and physiology of a species.

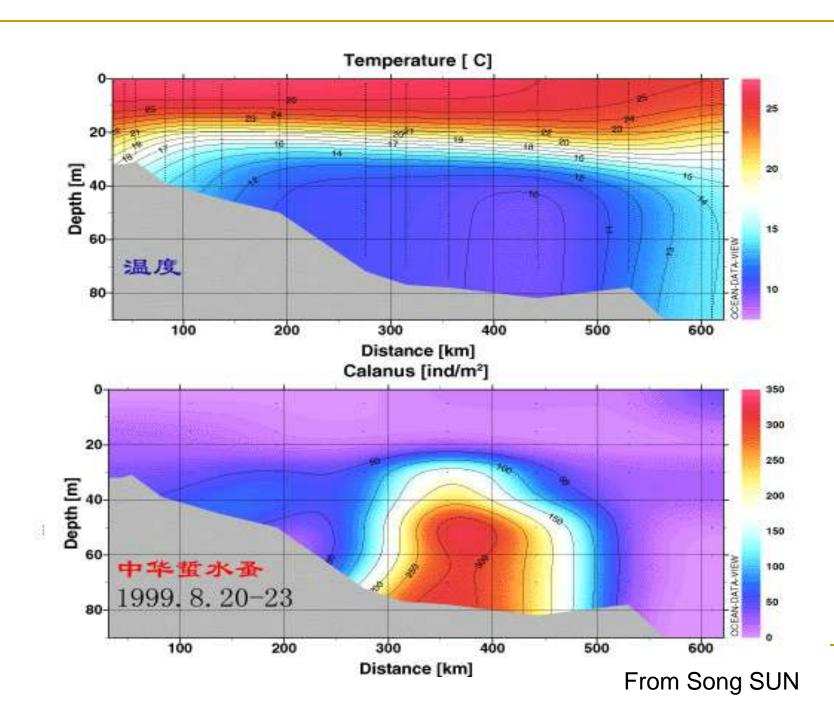

General biochemical composition of zooplankton

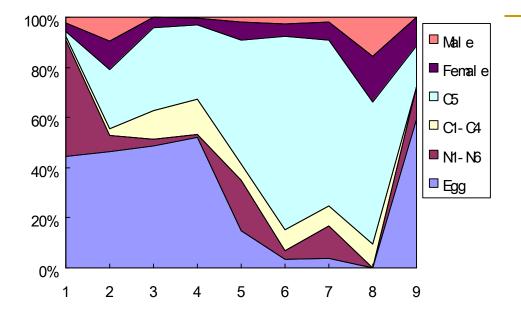
 Comparison of the biochemical composition of 182 freshwater and marine species (Ventura, 2006)


(b) Marine	Mysiids			Euphausiids			Calanoid copepods		
	Mean ± SD	Range	n	Mean ± SD	Range	n	Mean ± SD	Range	n
ATP	0.62 ± 0.17	0.69 - 0.35	2	0.37 ± 0.29	0.85 - 0.08	1	0.67 ± 0.02	1.70 - 0.39	13
ADP	0.33 ± 0.11	0.73 - 0.03	2	0.73 ± 0.31	1.34 - 0.11	1	0.27 ± 0.07	1.47 - 0.00	9
AMP	0.19 ± 0.10	0.60 - 0.00	2	0.09 ± 0.50	1.10 - 0.00	1	0.16 ± 0.04	0.71 - 0.00	9
DNA				0.33 ± 0.59	1.60 - 0.07	1	0.67 ± 1.09	3.92 - 0.06	5
RNA				0.53 ± 0.57	2.13 - 0.18	1	2.14 ± 0.57	6.80 - 0.31	7
Chitin	7.10 ± 0.65	8.40 - 5.80	1	4.83 ± 3.82	10.66 - 2.30	1	4.94 ± 2.12	9.30 - 2.10	13
Carbohydrate	3.20 ± 1.14	5.40 - 2.40	1	2.18 ± 0.09	2.36 - 2.01	1	2.82 ± 2.04	8.50 - 0.20	19
Protein	37.41 ± 20.64	66.66 - 39.14	3	43.90 ± 7.69	69.21 - 30.00	15	38.74 ± 11.20	64.34 - 23.94	37
Free amino acids	9.68 ± 1.90	13.60 - 5.94	3	5.26 ± 4.04	10.70 - 2.00	2	10.89 ± 4.08	19.35 - 5.06	5
Total lipids	13.67 ± 3.82	24.00 - 8.20	3	12.09 ± 9.26	59.70 - 0.43	20	25.08 ± 15.72	73.00 - 1.90	93
Phospholipids	41.56 ± 15.82	51.00 - 23.30	2	59.89 ± 17.76	84.68 - 35.18	8	41.54 ± 24.92	84.55 - 1.00	74
Triacylglycerol	39.04 ± 23.85	56.29 - 11.82	3	29.79 ± 12.00	51.03 - 15.32	8	18.31 ± 17.23	76.50 - 0.00	74
Wax esters	19.41 ± 18.92	37.81 - 0.00	3	10.32 ± 15.97	40.77 - 0.00	8	40.15 ± 32.51	94.13 - 0.00	74

- Among these compounds, lipids are those which have received the highest research effort (140 species were found with data on lipid content, which was more than twice the number of species for which data on protein were found).
- Lipids also exhibited the highest variability in minimum-maximum ranges, most significantly so for copepods.

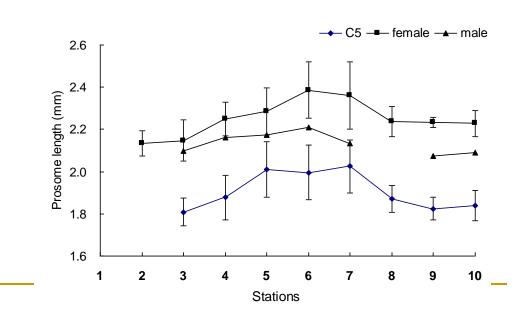
(Ventura, 2006)




Calanus sinicus

Using fatty acids in Population dynamics study of key zooplankton species in YSCWM– Calanus Sinicus

- The most dominant zooplankton species in the Yellow Sea
- Great importance in trophic transfer from phytoplankton to fish
- Tight linkage with YSCWM during summer time



Diapause in YSCWM

Development pause at C5 Longer body length Heavier body weight Limited DVM Non-active feeding

Aug 2001

Fatty acid?

Fatty acid composition of some dominant zooplankton species in the Yellow Sea

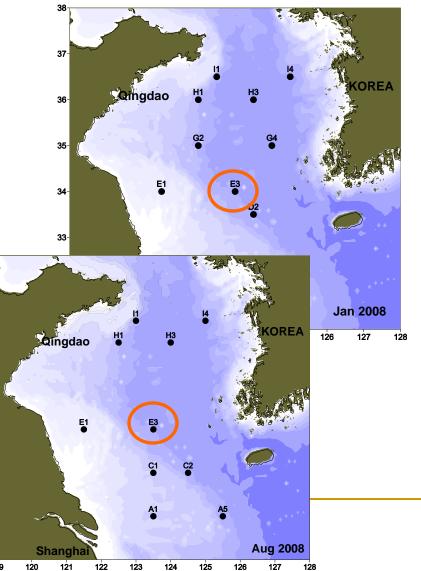
37

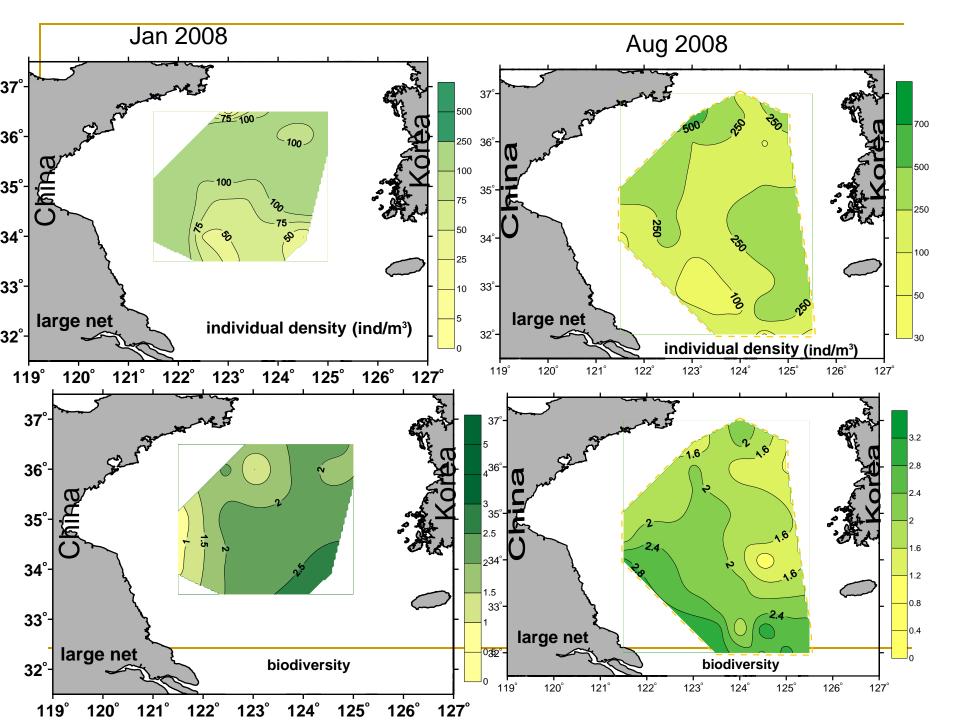
36-

35-

34

33-

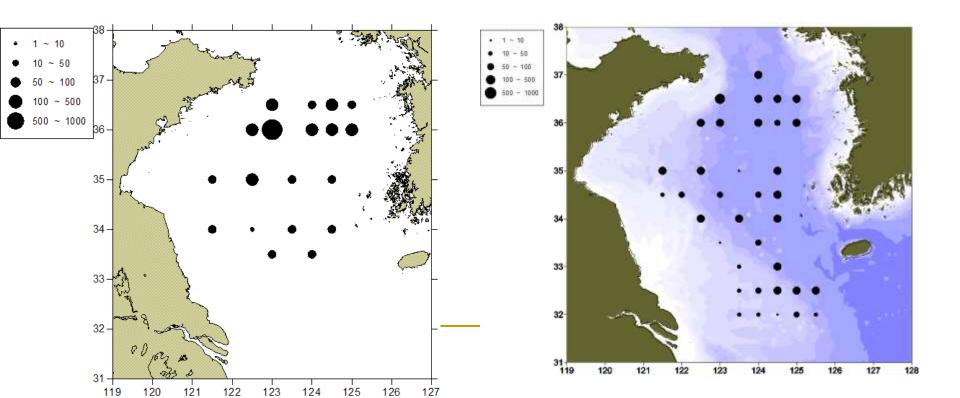

32-

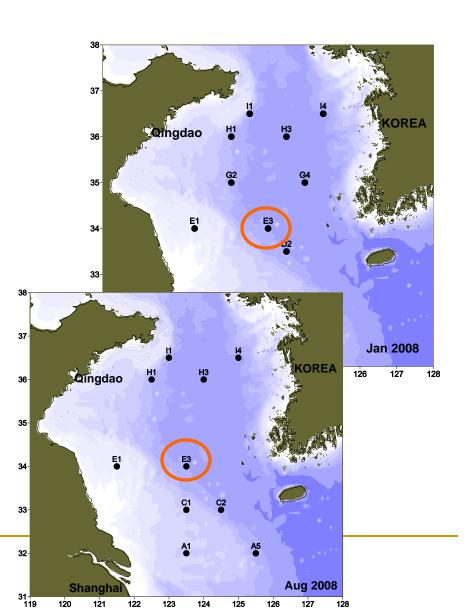

Methods:

Besides traditional net-sampling and microscopic counting,

Zooplankton assemblage samples by vertically towing a net (500 um in mesh size and 0.5 m² in mesh mouth). Dominant species such as *Calanus sinicus* were picked out for further analysis.

Samples were freeze-dried. Fatty acids were extracted and analyzed with GC-MS.





Abundance *of C.sinicus* (ind./m³) in 2008

Jan 36.5

Aug 109.9

		PG	EP	C3-C4	C5	Ç	ď
Fatty acids	C12:0	0.62	0.16	0.24	0.44	0.59	0.41
%	C14:0	3.63	10.73	7.10	9.88	8.16	9.85
	C16:0	67.39	22.72	39.41	26.64	58.18	47.35
Stn: E3 in Jan	C18:0	17.73	2.46	10.41	6.16	14.33	8.89
<i>PG:</i>	C14:1	0.09	0.07	0.00	0.24	0.17	
	C16:1n-7	1.90	9.63	4.26	8.04	4.76	6.81
Parathemisto	C18:1n9	1.87	7.71	1.90	3.97	1.20	3.05
gaudichardi	C20:1	0.40	1.42	2.37	3.42	2.60	3.30
	C22:1n11	0.05	0.44	1.07	1.86	1.21	1.75
EP: <i>Euphausia</i>	C18:3n6	0.26	10.19	2.60	5.09	0.59	1.43
pacifica	C18:2n6	0.15	0.99	0.24	0.75	0.14	0.30
	C20:4n6		1.09		0.27		
CS: Calanus	C20:5n3	2.69	11.21	10.53	11.74	3.61	6.33
sinicus	C22:6n3	2.62	16.46	18.93	20.11	4.01	10.40
	SFAs	89.90	39.62	57.87	44.08	81.72	66.63
	MUFAs	4.38	20.25	9.82	17.96	9.93	14.91
	PUFAs	5.72	40.13	32.31	36.30	8.35	18.46
TFA/DW%		3.89	8.44	0.96	3.67	5.51	4.20

		EP	CV	ę
	C12:0	0.84	1.40	1.18
1	C14:0	10.68	13.92	12.62
	C16:0	35.36	28.01	29.97
Stn: E3 in Aug	C18:0	5.06	6.58	6.66
	C14:1	0.14	0.16	0.20
EP: <i>Euphausia</i>	C16:1 (n-7)	3.97	7.60	0.65
	C18:1 (n-9)	4.84	2.57	3.66
pacifica	C20:1	0.89	11.47	3.69
	C22:1 (n-11)	0.25	7.60	1.65
CS: Calanus	C18:3 (n-6)	9.62	4.87	6.87
sinicus	C18:2 (n-6)	1.19	0.68	1.02
	C20:4 (n-6)	0.63		0.46
	C20:5 (n-3)	9.74	5.99	9.45
	C22:6 (n-3)	12.26	6.67	17.46
	SFAs	53.62	51.54	53.01
	MUFAs	12.94	30.25	11.74
	PUFAs	33.44	18.21	35.25
	16:1(n-7)/16:0	0.11	0.27	0.02
	20:5 (n-3)/22:6 (n-3)		0.90	0.54
	TFA/DW %	5.4	10.61	5.24

The results indicate

- CV in the cold water during summer accumulate lipids.
- Mono-unsaturated fatty acids was much higher than that in winter and higher than female adults
- A biochemical support for the summer diapause of *C.sinicus*
- A useful tool for life history studies.

Prospects for future works

- Biochemical data will not be used solely for species taxonomy. However, adding biochemical parameters to traditional taxa data will give us more information on the biology and ecology of zooplankton.
- Proteins and lipids are the two largest biochemical component of marine zooplankton. Amino acids and fatty acids can be used as biochemical fingerprint for understanding biology and ecology of target zooplankton species. ¹⁵N in amino acids, much more difficult.
- Biochemical data should be collected along with taxonomic data, and corresponding databases be constructed.
- Data comparison and analysis: geographic differences, chronically changes for zooplankton community and/or some key species.
- From biodiversity to functional biodiversity (processes, multidisciplinary)

